Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 16(738): eadi0979, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478629

ABSTRACT

Inhibitors of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) such as nirmatrelvir (NTV) and ensitrelvir (ETV) have proven effective in reducing the severity of COVID-19, but the presence of resistance-conferring mutations in sequenced viral genomes raises concerns about future drug resistance. Second-generation oral drugs that retain function against these mutants are thus urgently needed. We hypothesized that the covalent hepatitis C virus protease inhibitor boceprevir (BPV) could serve as the basis for orally bioavailable drugs that inhibit SARS-CoV-2 Mpro more efficiently than existing drugs. Performing structure-guided modifications of BPV, we developed a picomolar-affinity inhibitor, ML2006a4, with antiviral activity, oral pharmacokinetics, and therapeutic efficacy similar or superior to those of NTV. A crucial feature of ML2006a4 is a derivatization of the ketoamide reactive group that improves cell permeability and oral bioavailability. Last, ML2006a4 was found to be less sensitive to several mutations that cause resistance to NTV or ETV and occur in the natural SARS-CoV-2 population. Thus, anticipatory design can preemptively address potential resistance mechanisms to expand future treatment options against coronavirus variants.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , Humans , SARS-CoV-2 , Mutation/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use
2.
STAR Protoc ; 5(1): 102906, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38401122

ABSTRACT

Infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research, conducted in high-containment laboratories, requires transferring samples to lower containment labs for downstream applications, mandating sample inactivation. Here, we present a stepwise protocol for chemical inactivation of SARS-CoV-2 virus in culture supernatants or within infected cells and organoids, using eight chemical reagents validated via plaque assays. Additionally, we describe steps for troubleshooting virus inactivation, titer calculation, and log reduction. This protocol offers valuable resources for the COVID-19 research community, providing essential tools to advance research on this virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Chlorocebus aethiops , Vero Cells , Virus Inactivation , Organoids
3.
bioRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37986994

ABSTRACT

The SARS-CoV-2 viral infection transforms host cells and produces special organelles in many ways, and we focus on the replication organelle where the replication of viral genomic RNA (vgRNA) occurs. To date, the precise cellular localization of key RNA molecules and replication intermediates has been elusive in electron microscopy studies. We use super-resolution fluorescence microscopy and specific labeling to reveal the nanoscopic organization of replication organelles that contain vgRNA clusters along with viral double-stranded RNA (dsRNA) clusters and the replication enzyme, encapsulated by membranes derived from the host endoplasmic reticulum (ER). We show that the replication organelles are organized differently at early and late stages of infection. Surprisingly, vgRNA accumulates into distinct globular clusters in the cytoplasmic perinuclear region, which grow and accommodate more vgRNA molecules as infection time increases. The localization of ER labels and nsp3 (a component of the double-membrane vesicle, DMV) at the periphery of the vgRNA clusters suggests that replication organelles are enclosed by DMVs at early infection stages which then merge into vesicle packets as infection progresses. Precise co-imaging of the nanoscale cellular organization of vgRNA, dsRNA, and viral proteins in replication organelles of SARS-CoV-2 may inform therapeutic approaches that target viral replication and associated processes.

4.
mBio ; 12(1)2021 01 19.
Article in English | MEDLINE | ID: mdl-33468692

ABSTRACT

The mycomembrane layer of the mycobacterial cell envelope is a barrier to environmental, immune, and antibiotic insults. There is considerable evidence of mycomembrane plasticity during infection and in response to host-mimicking stresses. Since mycobacteria are resource and energy limited under these conditions, it is likely that remodeling has distinct requirements from those of the well-characterized biosynthetic program that operates during unrestricted growth. Unexpectedly, we found that mycomembrane remodeling in nutrient-starved, nonreplicating mycobacteria includes synthesis in addition to turnover. Mycomembrane synthesis under these conditions occurs along the cell periphery, in contrast to the polar assembly of actively growing cells, and both liberates and relies on the nonmammalian disaccharide trehalose. In the absence of trehalose recycling, de novo trehalose synthesis fuels mycomembrane remodeling. However, mycobacteria experience ATP depletion, enhanced respiration, and redox stress, hallmarks of futile cycling and the collateral dysfunction elicited by some bactericidal antibiotics. Inefficient energy metabolism compromises the survival of trehalose recycling mutants in macrophages. Our data suggest that trehalose recycling alleviates the energetic burden of mycomembrane remodeling under stress. Cell envelope recycling pathways are emerging targets for sensitizing resource-limited bacterial pathogens to host and antibiotic pressure.IMPORTANCE The glucose-based disaccharide trehalose is a stress protectant and carbon source in many nonmammalian cells. Mycobacteria are relatively unique in that they use trehalose for an additional, extracytoplasmic purpose: to build their outer "myco" membrane. In these organisms, trehalose connects mycomembrane biosynthesis and turnover to central carbon metabolism. Key to this connection is the retrograde transporter LpqY-SugABC. Unexpectedly, we found that nongrowing mycobacteria synthesize mycomembrane under carbon limitation but do not require LpqY-SugABC. In the absence of trehalose recycling, compensatory anabolism allows mycomembrane biosynthesis to continue. However, this workaround comes at a cost, namely, ATP consumption, increased respiration, and oxidative stress. Strikingly, these phenotypes resemble those elicited by futile cycles and some bactericidal antibiotics. We demonstrate that inefficient energy metabolism attenuates trehalose recycling mutant Mycobacterium tuberculosis in macrophages. Energy-expensive macromolecule biosynthesis triggered in the absence of recycling may be a new paradigm for boosting host activity against bacterial pathogens.


Subject(s)
Cell Membrane/metabolism , Cell Wall/metabolism , Energy Metabolism/drug effects , Mycobacterium smegmatis/metabolism , Mycobacterium tuberculosis/metabolism , Trehalose/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/biosynthesis , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Membrane/drug effects , Cell Wall/drug effects , Cord Factors/metabolism , Cord Factors/pharmacology , Diarylquinolines/pharmacology , Energy Metabolism/genetics , Galactans/metabolism , Galactans/pharmacology , Gene Expression/drug effects , Glucose/metabolism , Glucose/pharmacology , Maltose/metabolism , Maltose/pharmacology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycolic Acids/metabolism , Mycolic Acids/pharmacology , Rifampin/pharmacology , Trehalose/pharmacology
5.
Pathogens ; 9(5)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414000

ABSTRACT

One-third of the world's population is estimated to be latently infected with Mycobacterium tuberculosis (Mtb). Recently, we found that dormant Mtb hides in bone marrow mesenchymal stem cells (BM-MSCs) post-chemotherapy in mice model and in clinical subjects. It is known that residual Mtb post-chemotherapy may be responsible for increased relapse rates. However, strategies for Mtb clearance post-chemotherapy are lacking. In this study, we engineered and formulated novel bone-homing PEGylated liposome nanoparticles (BTL-NPs) which actively targeted the bone microenvironment leading to Mtb clearance. Targeting of BM-resident Mtb was carried out through bone-homing liposomes tagged with alendronate (Ald). BTL characterization using TEM and DLS showed that the size of bone-homing isoniazid (INH) and rifampicin (RIF) BTLs were 100 ± 16.3 nm and 84 ± 18.4 nm, respectively, with the encapsulation efficiency of 69.5% ± 4.2% and 70.6% ± 4.7%. Further characterization of BTLs, displayed by sustained in vitro release patterns, increased in vivo tissue uptake and enhanced internalization of BTLs in RAW cells and CD271+BM-MSCs. The efficacy of isoniazid (INH)- and rifampicin (RIF)-loaded BTLs were shown using a mice model where the relapse rate of the tuberculosis was decreased significantly in targeted versus non-targeted groups. Our findings suggest that BTLs may play an important role in developing a clinical strategy for the clearance of dormant Mtb post-chemotherapy in BM cells.

6.
PLoS One ; 12(2): e0173023, 2017.
Article in English | MEDLINE | ID: mdl-28245230

ABSTRACT

High-throughput sequencing is subject to sequence dependent bias, which must be accounted for if researchers are to make precise measurements and draw accurate conclusions from their data. A widely studied source of bias in sequencing is the GC content bias, in which levels of GC content in a genomic region effect the number of reads produced during sequencing. Although some research has been performed on methods to correct for GC bias, there has been little effort to understand the underlying mechanism. The availability of sequencing protocols that target the specific location of structure in nucleic acid molecules enables us to investigate the underlying molecular origin of observed GC bias in sequencing. By applying a parallel analysis of RNA structure (PARS) protocol to bacterial genomes of varying GC content, we are able to observe the relationship between local RNA secondary structure and sequencing outcome, and to establish RNA secondary structure as the significant contributing factor to observed GC bias.


Subject(s)
RNA/chemistry , Base Composition/genetics , Genome, Bacterial/genetics , Genomics , High-Throughput Nucleotide Sequencing , Protein Structure, Secondary , RNA/genetics , Sequence Analysis, DNA
7.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3355-3364, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27569900

ABSTRACT

BACKGROUND: Enolase, a glycolytic enzyme, has long been studied as an anchorless protein present on the surface of many pathogenic bacteria that aids in tissue remodeling and invasion by binding to host plasminogen. METHODS: Anti-Mtb enolase antibodies in human sera were detected using ELISA. Immunoelectron microscopy, immunofluorescence microscopy and flow cytometry were used to show surface localization of Mtb enolase. SPR was used to determine the affinity of enolase-plasminogen interaction. Plasmin formation upon plasminogen binding to enolase and Mtb surface was measured by ELISA. Mice challenge and histopathological studies were undertaken to determine the protective efficacy of enolase immunization. RESULTS: Enolase of Mtb is present on its surface and binds human plasminogen with high affinity. There was an average of 2-fold increase in antibody mediated recognition of Mtb enolase in human sera from TB patients with an active disease over control individuals. Substitution of C-terminal lysine to alanine in rEno decreased its binding affinity with human plasminogen by >2-folds. Enolase bound plasminogen showed urokinase mediated conversion into plasmin. Binding of plasminogen to the surface of Mtb and its conversion into fibrinolytic plasmin was significantly reduced in the presence of anti-rEno antibodies. Immunization with rEno also led to a significant decrease in lung CFU counts of mice upon infection with Mtb H37Rv. CONCLUSIONS: Mtb enolase is a surface exposed plasminogen binding protein which upon immunization confers significant protection against Mtb challenge. GENERAL SIGNIFICANCE: Plasminogen binding has been recognized for Mtb, however, proteins involved have not been characterized. We show here that Mtb enolase is a moonlighting plasminogen binding protein.


Subject(s)
Cell Membrane/metabolism , Mycobacterium tuberculosis/enzymology , Phosphopyruvate Hydratase/metabolism , Plasminogen/metabolism , Animals , Antibodies, Bacterial/blood , Chromatography, Affinity , Female , Fibrinolysin/metabolism , Humans , Lysine/metabolism , Mice, Inbred BALB C , Protein Binding , Tuberculosis/immunology , Tuberculosis/metabolism , Tuberculosis/microbiology , Tuberculosis/pathology
8.
Am J Pathol ; 185(7): 1924-34, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26066709

ABSTRACT

Mycobacterium tuberculosis (MTB), the causative agent of pulmonary tuberculosis, is difficult to eliminate by antibiotic therapy. We recently identified CD271(+) bone marrow-mesenchymal stem cells (BM-MSCs) as a potential site of MTB persistence after therapy. Herein, we have characterized the potential hypoxic localization of the post-therapy MTB-infected CD271(+) BM-MSCs in both mice and human subjects. We first demonstrate that in a Cornell model of MTB persistence in mice, green fluorescent protein-labeled virulent MTB-strain H37Rv was localized to pimonidazole (an in vivo hypoxia marker) positive CD271(+) BM-MSCs after 90 days of isoniazid and pyrazinamide therapy that rendered animal's lung noninfectious. The recovered CD271(+) BM-MSCs from post-therapy mice, when injected into healthy mice, caused active tuberculosis infection in the animal's lung. Moreover, MTB infection significantly increased the hypoxic phenotype of CD271(+) BM-MSCs. Next, in human subjects, previously treated for pulmonary tuberculosis, the MTB-containing CD271(+) BM-MSCs exhibited high expression of hypoxia-inducible factor 1α and low expression of CD146, a hypoxia down-regulated cell surface marker of human BM-MSCs. These data collectively demonstrate the potential localization of MTB harboring CD271(+) BM-MSCs in the hypoxic niche, a critical microenvironmental factor that is well known to induce the MTB dormancy phenotype.


Subject(s)
Adapalene/immunology , Bone Marrow Cells/microbiology , Mesenchymal Stem Cells/microbiology , Mycobacterium tuberculosis/physiology , Tuberculosis, Pulmonary/microbiology , Animals , Antitubercular Agents/therapeutic use , Bone Marrow Cells/immunology , Cell Hypoxia , Down-Regulation , Female , Green Fluorescent Proteins , Humans , Isoniazid/therapeutic use , Lung/microbiology , Lung/pathology , Mesenchymal Stem Cells/immunology , Mice , Mice, Inbred BALB C , Mycobacterium tuberculosis/pathogenicity , Nitroimidazoles , Radiation-Sensitizing Agents , Specific Pathogen-Free Organisms , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/pathology , Up-Regulation
9.
BMC Res Notes ; 6: 72, 2013 Feb 27.
Article in English | MEDLINE | ID: mdl-23445545

ABSTRACT

BACKGROUND: Hybridization based assays and capture systems depend on the specificity of hybridization between a probe and its intended target. A common guideline in the construction of DNA microarrays, for instance, is that avoiding complementary stretches of more than 15 nucleic acids in a 50 or 60-mer probe will eliminate sequence specific cross-hybridization reactions. Here we present a study of the behavior of partially matched oligonucleotide pairs with complementary stretches starting well below this threshold complementarity length - in silico, in solution, and at the microarray surface. The modeled behavior of pairs of oligonucleotide probes and their targets suggests that even a complementary stretch of sequence 12 nt in length would give rise to specific cross-hybridization. We designed a set of binding partners to a 50-mer oligonucleotide containing complementary stretches from 6 nt to 21 nt in length. RESULTS: Solution melting experiments demonstrate that stable partial duplexes can form when only 12 bp of complementary sequence are present; surface hybridization experiments confirm that a signal close in magnitude to full-strength signal can be obtained from hybridization of a 12 bp duplex within a 50mer oligonucleotide. CONCLUSIONS: Microarray and other molecular capture strategies that rely on a 15 nt lower complementarity bound for eliminating specific cross-hybridization may not be sufficiently conservative.


Subject(s)
Nucleic Acid Hybridization , Oligonucleotides/chemistry , Base Sequence , Chromatography, High Pressure Liquid , Oligonucleotide Array Sequence Analysis , Solutions , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...